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Abstract

A method is presented for computing sensitiv-
ity derivatives with respect to independent (input)
variables for complex, internally coupled systems,
while avoiding the cost and inaccuracy of finite
differencing performed on the entire system anal-
ysis. The method entails two alternative algo-
rithms: the first is based on the classical im-
plicit function theorem formulated on residuals of
governing equations, and the second develops the
system sensitivity equations in a new form using
the partial (local) sensitivity derivatives of the
output with respect to the input for each part of
the system. A few application examples are pre-
sented to illustrate the discussion. The method
has a potential to answer the "what if" questions
by presenting engineers with sensitivity informa-
tion on design trade-offs to guide human judgment
and formal optimization. In addition, the method
is compatible with the modern technology of dis-
tributed computing as well as traditional division
of design tasks among groups of specialists in the
design process. The capability to quantify the
effects of proposed design changes may provide the
basis for a mathematical model of design.

Nomenclature

the i-th CA

CA contributing analysis, a "black box"
transforming input into output data used in
analysis of a system; usually associated with
an engineering discipline, or a physical part
of the system

o CPU time for computing system sensitivity
derivatives by a one-step finite difference
procedure involving repeated analysis of the
entire system

c' CPU time for computing system sensitivity
derivatives using GSEl

c''  CPU time for computing system sensitivity
derivatives using GSE2

F vector of functions forming the equations
governing a physical phenomenon

f functional relationship

GSE1 Global Sensitivity Equations based on partial
derivatives of residuals

GSE2 Global Sensitivity Equations based on the

partial derivatives of output with respect to

input of each CA

nunber of input items received by a CA from

other CA's

1 identity matrix

M number of independent variables in a CA

m number of unknown variables in a CA

N

S

x

number of the CA's in a system analysis.

one solution of Eq. 1 for all the
output unknowns Y

X vector of independent varjables

Y vector of dependent variables

z number of unknown variables in a CA

ystem Analysis

*Deputy Head Interdisciplinary Research Office,
AF AIAA.

identifiers for CA's in a small system of
three CA's, equivalent of Ars Aps Aq

a,B,Y

Subscripts, superscripts, special markings:

i,j,k subscripts identifying CA's, elements of
vectors, and elements of matrices

o superscript or subscript identifying an ini-
tial value, or a normalization denominator

overbar linearized function

tilde normalized, nondimensional quantity

arrow above character designates a vector

Other symbols used locally are identified where
introduced.

Introduction

"What if" is the all important question that
arises again and again in design. Indeed, it may
be argued that the design process is not complete
until all such pertinent questions have been asked,
satisfactorily answered, and the answers translated
into design changes toward a product as good as it
can be made under a set of given restrictions. If
the object being designed is a complex, coupled
system, the "what if" questions are difficult to
answer because, to borrow a phrase from (Ref. 1),
"if you make any change to it there are likely to
be many subtle consequences". A recent example
from aerospace is the forebody shape in hypersonic
aircraft whose change influences structures, aero-
dynamics, propulsion, and, ultimately, the
performance.

Many "what if" questions cannot be quantified
and engineering judgment is indispensable to answer
them. However, in aerospace vehicle design a great
deal of "what if" questions can be quantified ei-
ther by assessing the effects of relatively large
variations of the variables involved (a parametric
study) or by considering very small, theoretically
infinitesimal variations to calculate sensitivity
derivatives.

The focus of this paper is on sensitivity
analysis. While recent developments in numerical
methods provided engineers with many useful tech-
niques for disciplinary, or subsystem, sensitivity
analysis, e.g., (Refs. 2, 3, 4), examination of
literature, e.g., (Refs. 1, 5, 6) shows a void as
far as the comparable methods applicable to entire
systems are concerned. This paper's purpose is to
address that void and to offer a system sensitivity
analysis capable of answering the quantitative
"what if" design questions. To that end, the paper
presents a method for computing sensitivity deriva-
tives with respect to independent (input) variables
for complex, internally coupled systems, while
avoiding the cost and inaccuracy of finite differ-
encing performed on the entire system analysis.

The method entails two alternative algorithms: the
first is based on the classical implicit function
theorem formulated on residuals of governing equa-
tions, and the second develops the system sensitiv-
ity equations in a new form using the partial



{1ocal) sensitivity derivatives of the output with
respect to the input for each part of the system.
A few application examples are presented to illus-
trate the discussion.

Statement of the Problem

In this paper, a complex, internally coupled
system is defined as physical object whose behavior
is described by a vector Y obtainable as a solution
of a set of simultaneous (coupled) equations which
can be partitioned into subsets such as

a((X’YB’YY)’Yu) =0
BUXYLY ),¥,) = 0 (1)
XYY 0,0 ) = 0

Each of the system subsets represents a distinct,
separate analysis that will be referred to as con-
tributing analysis {CA), usually associated with a
particular engineering discipline, or a distinct
physical part (a subsystem) of the system, or both.
Partitioning of the system analysis into separate
but coupled CA's amounts to a system decomposition.
The Operations Research literature calls such par-
titioning an aspect decomposition if the CA's cor-
respond to disciplines, and an object decomposition
if they correspond to physical subsystems (Ref. 7).
In most engineering problems both types of decompo-
sition are used simultaneously to break the large
task into smaller ones. Mathematics developed in
this paper applies equally to both types. All the
mathematical discussion herein is based on three
partitions because that is a number which is con-
veniently small, and yet sufficient to establish
patterns that can easily be generalized to arbi-
trarily large number of partitions. Solving the
entire set of equations will be referred to as

the system analysis which can be written as

F(y,x) = 0.

Each CA yields a solution in form of a vector
Y4« (where subscript x stands for a, 8 or y, and
identifies a subset of Y) listed 1ast in the paren-
theses, given the input listed in the inner paren-
theses. The system is internally coupled because
the input to one CA includes outputs from the other
CAs - as shown by the arrows in Figs. 1. The cou-
pled system is depicted in Fig. 2 by a directed
graph representation (e.qg., (Ref. 1)).

This paper's focus is on large scale applica-
tions in which at least some CA's are nonlinear and
complex, so that the system analysis can only be
done iteratively. Typically, a CA is carried out
by a group of specialists, maybe at a separate sub-
contractor organization. This may be illustrated
by an example of aircraft wing design incorporating
nonlinear aerodynamics, structures, and active con-
trol {aspect decomposition), or substructuring (ob-
ject decomposition).

The system solution Y is sensitive to the
independent variables X present in the CA inputs.
It is important to emphasize that the independent
variables X may include not only the designer-
decided inputs (design variables) but also other
inputs external to the system, for example, loads,

heat flux, etc. In the most general case, all
variables X may occur in the input to each CA, but
in most practical applications only a subset of the
vector X will enter the input of a particular CA.

One way to compute sensitivity derivatives of
the solution Y with respect to the independent
variables X is a finite difference technique de-
picted by a flowchart in Fig. 3 in its simplest,
one-step-forward, version. It requires repetition
of the system analysis for every perturbed X. This
may be prohibitively costly, particularly if the
system analysis is nonlinear and/or iterative.

Even more importantly, it may be inaccurate to the
point of producing meaningless results as the
effect of small perturbations in X may drown in the

noise of the jterative solution of the system
Te.g., Ref. B}. Attempting to remedy this effect
by increasing the perturbation magnitude may intro-
duce significant error due to the analysis nonlin-
earity. Consequently, the perturbation range in
which accuracy of finite differencing is acceptable
becomes problem dependent and may not even exist.

Thus, the problem is how to calculate the
sensitivity derivatives of the system sotution Y
with respect to the independent variables X without
resorting to a finite difference operation involv-
ing the entire system analysis as in Fig. 3.

Solution

As mentioned in the Introduction, there are at
least two ways of solving the system sensitivity
problem. A residual-based solution will be intro-
duced first, and an alternative using local output
sensitivity will follow.

Residual-Based Solution

The jmplicit function theorem of functional
analysis, e.g., Ref. 9 states that a set of
governing equations

F(Y,X) = 0; Y = f(X) (2)

has the following sensitivity equations

aF | JaY { _ oF
[W] Wk} = - {ss(k} (3}

The sensitivity equations are always simultaneous,
linear, and algebraic, regardiess of the mathemati-
cal nature (nonlinear, transcendental, etc.) of the
governing equations of the system. In Eq. 3, the
matrix of coefficients, m x m, is a Jacobian matrix
of the partial derivatives with respect to depen-
dent variables, and the right-hand-side vector con-
tains the partial derivatives with respect to a
particular independent variable. These partial
derivatives are evaluated using the X and Y values
which satisfy £Eq. 2. In other words, solution of
the governing equations, Eq. 2, is a prerequisite
to forming and solving the sensitivity equations,
Eq. 3.

The solution vector of Eq. 3 comprises the
derivatives of the dependent variables with respect
to a particular independent variable. It will be
useful in further discussion to have noted at this
point that £q. 3 is based on residuals of Eq. 2,



i.e., a perturbation of one element in X alone
would generate a vector of residuals of F replacing
zero on the right hand side of the equation. Simi-
larly, a perturbation of one element in Y alone
would also generate a residual vector. Conse-
quently, to maintain the right hand side at zero
despite the perturbation of X, there must be a
change of in Y subordinated to the change of X to
make the residual vectors due to Y and X offset
each other., Equation 3 merely states that to gen-
erate compensating residuals the rates of change of
the residuals with respect to the dependent and
independent variables must balance each other, tak-
ing into account the implicit dependence of Y on X.
In other words, the total derivative with respect
to X of the residuals of Eq. 2 must vanish.

The method for computing the terms given in
Eq. 3 is problem-dependent. Obviously, an analyti-
cal differentiation is preferred but, if that is
not possible, a finite difference technique may be
applied. Since the finite difference technique in
this application is used to calculate the partial
derivatives of residuals, it requires only an eval-
uation of F(Y,X) for perturbations of its arguments
instead of a solution of F(Y,X) = 0 for each per-
turbation. Thus, the finite difference operation
performed on the entire system analysis as in
Fig. 3 is eliminated.

When applied to the partitioned system in
Eq. 1, the sensitivity equations 1 take on this
form

) ]
aui/aYaj' aai/aYBJ Iaui/aij aYui/aX*k
Uy I D
3Bi/3Yaj: aeilaYBj :33i/3YY3 a\{m./ax,,,k
R it B MR
aYi/aYaj. 3Yi/ayej. aYﬂ/aYYj oY 1/ax,,k
(4)
0
= -3,/
0

referred to as the Global Sensitivity Equations 1
(GSE1). These equations contain as unknowns the
sensitivity derivatives of the system solution Y
(partitioned) with respect to an independent vari-
able X (one at a time). Their matrix of coeffi-
cients is populated by the partial derivatives of
the residuals of each CA with respect to the input
that CA receives from the other CA's, and the
right-hand-side vector is formed from the partial
derivatives of the CA residuals with respect to the
independent variable directly affecting that CA.
For a general case of N CA's, the equations acquire
a format shown in Appendix A.

Despite their potential cost and accuracy
advantages, the use of the sensitivity equations 4
based on residuals may not be straightforward in
engineering practice because existing disciplinary
codes have usually no provisions to compute the
residuals, and the residuals usually have no obvi-
ous physical mneaning that would allow the user to
judge validity of the numbers (An exception is

structural analysis where the residuals are unequ-
ilibrated loads). These reasons motivated deriva-
tion of a new form for the system sensitivity equa-
jons not predicated on the residuals.

Formulation Based on Sensitivities of Individual
CA's

Residual-independent sensitivity equations may
be derived in more than one way. The derivation
shown below is based on linearization of the
governing equations 1, an alternative derivation is
shown in Appendix A.

Equation 1 relate each partition of Y to the X
and the other partitions of Y so that from each
equation:

Y, = fa(X’YS’YY)
Yy = (KLY LY) (5)
YY = fy(X’YB’Yu)

These functions may be linearized in the neighbor-
hood of the solution of Eq. 1 denoted Y ., Y,., Y

. . . . a0 go Yo
using a curtailed Taylor series. Using Ya as an
example:

Yu = Yuo + (afa/aX)AX + (afu/aYB)AYﬁ

+ (3fa/9Yy)AYY 3 (6)

By moving all terms to the left hand side, Eq. 6
are transformed into a linearized version of Eq. 1

a = Ya - Yao - (afa/ax)(X - Xo)
- (afu/aYB)(YB - Yeo)
+-(a%hxﬂ(n-—no)=o

B =Yg - Yy, - (af, XX - X))
- (aF Y Y - Y )

+ - (afs/aYy)(YY - YyO) =0

Y Y, - Yo (af XX - X))

- (afy/aYa)(Y“ - Yao)

fn
o

+ - (afY/aYB)(Y8 - YBO) (7)

Under some conditions discussed in Appendix A,

Eq. 7 may have no solution because of singularity
of their matrix of coefficients. Assuming that
singularity conditions examined in the Appendix A
do not occur, it is axiomatic that Eq. 7 and 1 have
the same solutions Y and that these solutions have
the same derivatives with respect to X, consequent-
1y, we may treat Eq. 7 as surrogate governing equa-
tions. The implicit function theorem may now be



applied to these equations just as it was applied
to Eq. 1 by performing the differentiation shown in

Eq. 3. This yields sensitivity equations in the
form:
[ " _ l_ ]
1 . afa/aYB X afa/aYY
----- ] ®» @ = @ ] = e =-o-
- ! '-
afB/aYu . I . afB/aY
_____ ) = = e e e @ = = -
- [ '
afy/ava ) afY/aYB ) 1 _j
(8)
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termed Global Sensitivity Equations 2. For a
general case of N CA's, the equations acquire a
format shown in Appendix A.

Equation 8, contains no residuals of the CA's.
Instead, its matrix of coefficients is populated by
the sensitivity derivatives of each CA output with
respect to that CA's input, and its right hand side
vector represents sensitivity of a CA's output with
respect to the independent variable (one at a time)
directly affecting that CA. As far as the complete
system is concerned, these derivatives are partial
(1ocal) derivatives, while the solution of Eq. 8
yields the derivatives of the solution Y
(partitioned) with respect to an independent
variable (one at a time). By definition, the
partial derivatives represent sensitivity of each
isolated CA, and the derivatives of Y represent the
system sensitivity with all the couplings (e.g.,
Figs. 1 and 2) fully accounted for.

Both GSE1l and GSE2, Eqs. 4 and 8, produce the
same solution vector and both are equally exact
because they are derived from a mathematical theo-
rem without any simplifying assumptions or approxi-
mations. Similarity of mathematical characteris-
tics and potential usage amonqg the two sets of
equations allows to 1imit the ensuing discussion to
GSE2, occasionally using the notation GSEx to
address both GSEl and GSE2. This emphasis on GSE2
does not imply an unqualified recommendation of
GSE2 over GSEl. The choice is up to the user and
it depends on the factors already stated in the
foregoing as motivations for the GSE2 development,
and on the considerations of cost and benefits
discussed later (supported by Appendix B).

Figure 4 illustrates details of the GSE2
structure for three CA's. The general pattern is
easily extrapolated to larger number of CA's. The
matrix of coefficients has identity submatrices on
the diagonal. Each off-diagonal submatrix is a
Jacobian matrix corresponding to a CA. For ex-
ample, the Jacobian at the upper right corner in
Fig. 4 contains partial sensitivity derivatives of
every item of output from the o« CA, a column m
long, with respect to every one of m  input items

the a CA receives from the y CA, hence the n%

columns in the Jacobian. The corresponding
Jacobian at the Tower left corner comprises the
partial derivatives of the output from the y CA
with respect to the input the y CA receives from
the a CA. In general case the two Jacobians are
not symmetric. An example of the above two
Jacobian matrices might be drawn from a case of an
actively controlled flexible wing. Then, assuming
the CA's a, B, and y to be aerodynamics, struc-
tures, and active controls, respectively, the upper
right Jacobian would include the partial sensitiv-
ity derivatives the aerodynamic pressure at select-
ed locations on the wing to the control surface
deflections. Correspondingly, the lower left
Jacobian might comprise of the partial derivatives
of the control surface deflections to the aerodyna-
mic pressure coefficients. These derivatives de-
rive from the control law that establishes a func-
tional relationship between the control surface
deflections and the aerodynamic pressure on the
wing (sensed directly or indirectly).

On the right hand side, there is a vector of
the partial sensitivity derivatives of the CA
output with respect to a particular independent
variable X. These partial derivatives are nonzero
for those CA's that are directly influenced by that
particular independent variable. Referring again
to the above example of a flexible wing, if the
variable X were, say, the planform aspect ratio,
the nonzero elements of the right-hand-side vector
would occur at the locations corresponding to the g
and y partitions, since only the aerodynamics and
structures would be directly influenced.

The GSE2 matrix of coefficients depends only
on the coupling among the CA's and not at all on
the sensitivity to the design variables. The
opposite is true for the right-hand-side vectors.
Thus, the matrix can be formed and factored once,
and the solutions for many design variables can be
obtained by repeated back-substitutions of each
right-hand-side vector. The coupling among the
CA's is reflected in the topology of the GSE2
matrix as shown in a few examples in Fig. 5 and 6.
If there are no couplings (#1), the matrix is an
jdentity matrix and the derivatives of Y are equal
directly to the partial derivatives on the right-
hand-side. Each coupling link generates an off-
diagonal Jacobian until the matrix becomes fully
populated for a fully coupled system (#7). The
coefficient matrix in the GSE2 exhibits a the same
pattern,

There is a coincidence of form between the
matrix of coefficients in GSEx and the so-called
equation precedence matrix (or N-Square Matrix)
used in Operations Research literature {e.q.,
(Ref. 1, n. B7)) to analyze internal couplings in
systems. Namely, each non-zero, off-diagonal
Jacobian in the GSEx matrix of coefficients
corresponds to a non-zero element in the M-Square
matrix for the same system.

As a matter of a particular interest to a
structural engineer, one may observe that if F in
Eq. 2 represents structural load-deflection equa-
tions, then the Jacobians in Eq. 8 correspond to
substructures or, ultimately, individual finite
elements.

In some applications it may be convenient (for
instance, when the X variables are measured in



different units) to have all terms in GSE2 dimen-
sionless. A nondimensional version of the GSE2 is
given in Appendix A.

Examples

Since both the GSE1l and GSE2 (Egqs. 4 and 8,
respectively) are rigorously derived from a fun-
damental theorem they do not need numerical verifi-
cation. However, a few examples are provided for
the usage of GSE2 to support the discussion of
costs and benefits that will follow.

A simple example of a 2D airfoil in airflow is
shown in Fig. 7. The airfoil is supported by two
linear springs attached to a ramp whose angle of
inclination y is an independent variable. The
elastic degrees of freedom allowed are only the
pitch and the plunge. The 1ift coefficient is
assumed to be a nonlinear function of the angle
of attack illustrated in Fig. 8 and defined in
Table 1 - Aerodynamics. The function is set up
deliberately as a transcendental function to admit
only an iterative system analysis. The angle of
attack o depends on the ramp angle (design variable
v and the airfoil elastic support pitch angle ¢.

The airfoil on springs is an aerodynamic-
structure system abstracted as a directed graph in
Fig. 9. A1 the equations that constitute the
Aerodynamic and Structures CA's in the graph are
1isted in Table 1 which also shows the problem
notation and its correspondence to the generic
notation used in the paper, and the numerical data
for the example., The purpose of the example is to
show computation of the derivatives of the system
solution output - the 1ift L and the elastic pitch
angle ¢ - by means of the GSE2 and to compare the
results with those from a finite difference
technique.

The system solution was found iteratively and
is listed in Table 2 for arbitrary y value of .05
rad. Next, the sensitivity derivatives of L and y
with respect to the angle y were obtained by the
finite differences procedure at the system level
illustrated in Fig. 3 which required repetition of
the iterative solution for the angle ¢ incremented
by .0025 rad to .0525 rad. These derivatives are
shown in Table 2 and provide reference for compari-
son with the same derivatives computed using the
GSE2. Incidentally, the derivative of L is greater
than the partial derivative due to the elastic
effect. The GSEZ and the numerical values of the
partial derivatives that enter these equations are
also given in Table 2 (these equations are also
shown in a dimensionless format in Appendix A).
The partial derivatives were obtained by the same,
simple, one-step-forward, finite difference pro-
cedure referred to above but applied separately to
Aerodynamics and Structures CA's. Finally, lable 2
presents the GSEZ solution that agrees with the
finite difference results obtained at the system
level.

The second example shows how the GSE2 equa-
tions for a system are made up of the partial
derivatives for the system CA's. The system is a
flexible wing with an active control intended to
reduce the root bending moment. The system di-
rected graph and the coupling information are shown
in Fig. 10 - upper part. The bottom part of the
figure illustrates the make-up of the GSE2.

Dimensions of the arrays entering the GSE2
depend on the number of the individual pieces of
data (coupling channel bandwidth, referred to
as bandwidth, for short) communicated from one CA
to another. These dimensions have a strong impact
on the computational cost of the method as shown in
the next section and in Appendix B, therefore, it
is important to keep the bandwidths as small as
possible. In this example, the Structures-Active
Control channel does not need to transmit more than
a few strain gage readings. Similarly, the
Aerodynamics-Active Control channel transmits only
a few dynamic pressure sensor indications {or only
the Mach number and the angle of attack value from
which the pressures may be inferred) and one, or
two, control surface deflection angles. In con-
trast, the information moving along the
Aerodynamic-Structures channel may include hundreds
of the dynamic pressure values for discrete loca-
tions on the wing, if a panel-based CFD code is
used, and thousands of the nodal point displace-
ments output from a finite element code. It is
evident, that this channel will require attention
to reduce its bandwidth. Such reduction may be
achieved by representing deformations and loads by
a relatively small number of generalized coordi-
nates and corresponding generalized forces based on
modal analysis, following the practice well estab-
lished in aeroelasticity analysis.

Another example of the use of the GSE2 for a
system with active control is described in
(Ref. 8).

Costs and Benefits

By using GSEx (Eqs. 4 or 8), the cost of
repetitive system analysis required by finite
difference procedure (Fig. 3) is eliminated, but
the cost of generating the input into these equa-
tions and solving them is added. Using the CPU
time as a simplified measure of the computational
cost, Appendix B shows, under a set of assumptions,
that the cost for the finite difference procedure
of Fig. 3 increases with the square of the number
of CA's in the system. On the other hand, the cost
of generating the input into GSEx under the same
set of assumptions is proportional to the product
of the number of CA's and the bandwidth. These
relations suggest that there is a limit on the
finite difference procedure's applicability to
large systems, and show the importance of the band-
width to the cost of the GSEx. As far as the
accuracy of GSEx is concerned, it depends on the
conditioning of its matrix of coefficients (see
Appendix A) but is not affected by the system
dimensionatity.

The principal qualitative advantage of the
sensitivity analysis based on the GSE2 is that it
allows to treat the system as decomposed into a set
of "black boxes" coupled by a well-defined sets of
data. Each black box may, then, be subjected to
its own sensitivity analysis performed by special-
ists intimately familiar with the specifics. The
specialists may use any means for the partial sen-
sitivity analysis available such as: finite dif-
ference procedures, historical statistical data,
approximate methods, or even judgmental assessment.
It should also be stressed that they may also draw
on the disciplinary, quasi-analytical sensitivity
analysis algorithms that are now undergoing an in-
tensive development (Ref. 6). They may even obtain



the sensitivity data experimentally. In general,
the approach divides the labor and thus creates
opportunity for concurrent data processing in the
contemporary distributed computing environment, and
supports a broad workfront in the engineering
organization.

Another benefit from the "black box" approach
is that the GSEx are inherently recursive, in the
sense that each of the system's "black boxes" (the
CA's) may be a complex system within itself. If
so, its sensitivity analysis may be carried out as
described herein, to produce the sensitivity deriv-
atives that will be treated as the sensitivity par-
tial derivatives in the GSEx of the parent system.

Regarding of the choice of GSE2 vs. GSEl, if
the computational cost was the only factor (see
Appendix B) GSE1l would be recommended over GSE2.
However, the nonavailability of the residuals in
existing disciplinary codes, and difficulties with
physical interpretation of the residuals clearly
favor the GSE2 format. Furthermore, the disciplin-
ary sensitivity analyses are formulated to yield
data compatible with input to GSEZ but not GSEl.
These considerations may be overridden in the fu-
ture by new disciplinary code developments (avail-
ability of the residual options) encouraged by the
strong cost advantage of the GSEl. For now, the
choice is judgmental.

Usage in Design

Systematic procedure for generating the system
sensitivity data in a design process using the GSE2
may be organized in a way shown by a Chapin-format
(Ref. 10) flowchart in Fig. 11. It begins with the
system analysis for a given X. The partial sensi-
tivity derivative computations follow in each CA
independently for the given X and given Y (the
latter obtained from the system analysis). The
partial derivative calculations may be carried out
concurrently. The final operation is an assembly
and solution of the GSE2. The usage of GSEl is
similar. The results of a system sensitivity anal-
ysis may be used to identify the "design drivers",
and to determine design modifications toward im-
provement, or they can be input into a formal opti-
mization procedure. Since, in general case, the
system solution and its sensitivity analysis have
to be updated after moving away from the previously
solved design, the flowchart procedure has to be
iterated as the design process advances.

The GSEx may also be used to assess the coup-
ling strength between any two CA's. This can be
done by computing derivatives of the GSEx solution
to the elements of the GSEx matrix in a manner
shown below for the GSE2 used as an example.

The GSE2 may be written as

[A] -g}'} (RHS}; (9)

where A and RHS are the matrix of coefficients and
the right hand side vector, respectively, defined
in £Eq. 8. Since the equations are linear, the
derivatives of their solution with respect to

the elements of the matrix A may be obtained by
substituting Eq. 9 for F in Eq. 2 and, then,
writing the corresponding sensitivity equations
using the differentiation pattern of Eq. 3

a  hy) . [aa]far L
M g’@} ) -E’“ij]{sr’ e

In this set of equations the matrix aA/aAi- is all

empty except unity at the location occupied by the
element Aij in the matrix A. The vector of the

partial derivatives of Y with respect to X s
available from the solution of Eq. 9, and the deri-

vatives of the RHS in Eq. 9 with respect to Ajj are
null so they do not appear in £q. 10. Consequent-
1y, the unknown derivatives a(aY/an)/aAi' may be
obtained by backsubstitution of the new right hand
side vector over the matrix A decomposed once in
the solution of Eq. 9 and saved.

These derivatives measure the influence of the
partial sensitivity derivatives Aij on the sensi-
tivity of the system with respect to X and may be
adopted as indicators of the strength of the coup-
1ings among the parts of the system. A full survey
of the coupling strengths would require solution of
Eq. 9 and 10 for each combination of Aij and X .

In case of Y and X expressed in nonhomogeneous
physical units, a dimensionless form shown in
Appendix A for Eq. 8 would have to be used to ob-
tain the coupling strength indicators that could be
compared with each other. The comparison would be
useful to identify relatively weak couplings that
might be dropped from the system's mathematical
model. Thus, the coupling strength indicators may
augment the system analyst's judgment in searching
for a compromise between the system model simplic-
ity and its predictive accuracy.

Conclusions

The paper addresses problem of a sensitivity
of a complex, internally coupled system behavior
(response) to changes in independent variables. It
is assumed that the system apalysis is made up of
sel f-contained analyses, corresponding to disci-
plines and/or physical subsystems, which exchange
input/output data with each other. The problem is
solved by formulating rigorous sensitivity equa-
tions - the global sensitivity equations - derived
in a form based on the residuals of the governing
equations, and in a new form that does not rely on
the residuals. The latter is judged to be more
useful to engineers than the former. It allows
evaluation of system sensitivity to independent
variables on the basis of the partial derivative
information obtained locally within each contri-
buting engineering discipline, or within each
physical subsystem analysis, consistent with the
decomposition of the design process among the
specialty aroups, and compatible with the tech-
nology of distributed computing. The equations
eliminate the need for costly and potentially
inaccurate finite differencing performed on the
entire system analysis, and are capable of accept-
ing experimentally obtained sensitivity data.
Their computational cost advantage over the
reference finite difference procedure increases
with the number of self-contained analyses into
which the system analysis can be partitioned, and
is reduced proportionally to the volume of the
coupling information.

Derivatives of the solution of the sensitivity
equations with respect to their own coefficients
may be useful as indicators of the strength of the



couplings among the parts of the system. Ranking
these indicators by their magnitudes may identify
weak couplings that might be eliminated from the
system's model to make it simpler without sig-
nificant loss of its predictive accuracy.

The global sensitivity equations in either
form are offered as a tool to support the design
process by contributing the system sensitivity in-
formation as an aid for human judgment and/or for
use in formal optimization. Inasmuch as the global
sensitivity equations quantitatively answer, with
the first order of the accuracy, the "what if"
questions underlying the design process, they may
be regarded as a first order mathematical model of
that process.
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Appendix A

Alternative Derivation, Generalization to a
Case of N CA's, and a Dimensionless Format for the
Global Sensitivity Equations 2.

Alternative Derivation

An alternative derivation begins with Eq. 5,
differentiated with respect to one particular
independent variable, say, X, . Using the chain
rule, the derivatives of Y are

av Xy = (af /aX ) + (af /aY ) (Y, /aX)
+ (afa/aYY)(aYY/an)

ava /Xy = (afg/ax ) + (afg/aY V(Y /aX )
+ (afs/aYY)(avy/axk)

Y faX = (af /aX ) + (af /aY¥ M(aY /oK)

+ A
(afY/aYB)(aYB/an) (A1)
Collecting the given and unknown terms, and re-
arranging, yields the GSE2 in the format of Eq. 8.

Possible Singularity of the Matrix of Coefficients
in £q. 7 and GStx.

When a solution of a set of nonlinear equa-
tions, corresponding to Eq. 2, exists by virtue of
intersection as illustrated for an example of two
functions in a two-variable space in Fig. 12(a),
then, the same solution coordinates are defined by
a set of corresponding linearized equations,
corresponding to £q. 7, and represented by the
dashed tangents in the figure. However, in case of
the solution existing by virtue of tangency, as in

Fig. 12(b), the corresponding tangents overlap.
Hence, their equations, Eq. 7, become singular and
have no solution. Therefore, they no longer can be
used as a substitute for the original, nonlinear
equations, or as a basis for deriving linear sensi-
tivity equations, since the matrix of coefficients

in these equations will also be singular. It will
be so because Eq. 7 may be written as
(A JEY(X)y = {RHS(X)} (A2}

and the corresponding sensitivity equations ob-
tained either from Eq. 4 or Eq. 8 are

A Y (X)/aXp = -[aA(X)/3x1(Y}
+ {3RHS(X)/aX}; (A3)

Since Eq. A2 and A3 share the same matrix of coef-
ficients, its singularity affects both sets of
equations.

One may add that the tangency-type solution to
Eq. 2 depicted in Fig. 12b has also a drawback of
vendering the coordinates of the solution point S
il11-defined. As shown in Fig. 13, due to error in
numerical definition of the tangent functions, the
coordinates of the point of tangency fall into
broad intervals of uncertainty. This may also
occur for the intersection type-type solution, if
the intersection angle is small, then the matrix of
coefficients A(X) may be i11-conditioned, although
non-singultar. Occurrence of these cases in design
usually indicates that the design analysis is i11-
posed and should be reformulated.

The GSEx matrix of coefficients may also be
singular, if the system is physically unstable,
e.g., a wing divergence. However, such instability
would normally manifest itself at the prerequisite
stage of the system analysis (solution of Eq. 1),
so it is not expected to become a problem in the
sensitivity analysis.

GSEl and GSE2 Generalized to a Case of N CA's.

A simple extrapolation of the pattern from the
case of three CA's discussed in conjunction with
Eq. 1, 4, and 8, leads to Eq. 1, GSELl, and GSE2,
respectively, taking on the form of Eq. A4, A5, A6:

TTTTTTTET T i= 1N

S T R R AN R NP R L
[(B] « {aY/aX,} = - (3A/aX,} (A5)
Bij = aAi/an

(B « {aY/aX,} = (af/aX} (A6)
B =

ij = 'afi/an; Bii =1



Dimensionless Form

To transform the GSE2 from the form of Eq. 8
to a dimensionless form, we normalize the variables
Y and X in Eq. 1 to unity by dividing them by their
initial values (if any of them is zero, a suitable
nonzero value is used instead). The normalization
yields, showing two partial derivatives as examples

N v — . o] 0
(BYGi/aYBj) = (aYuT/aYBJ)(YBj/Y‘X1) (A7)
(5?ai/é§k) = (3Y /3% ) (R/Y2)) (A8)

This normalization introduced into Egs. 5, 6, and 7
leads to a dimensionless form for Eq. 8. For in-
stance, the partition g of Eq. 8 becomes

]
My 1. 1 il 1 Al 1. = 1 (A9)
3 Baijr * EY; syij-3¥; BxkuSY; gxk
___l_l ______ I-___l_____
where
= 0. . =y iy . = xOv0
Yeaij = Yai/83% Teyi YY1/YBJ’ Yaxk = /Y3

Referring to the example defined in Tables 1 and 2,
the GSE2 shown in Table 2 transform to the follow-
ing dimensionless form:

Vsl =ze5l 502.2995 N;
¢ = .0175805 rd
Xk =y; ¥ = .05 rd
1 -.343] [aC/a¥ .343
= {A10)
1 1 /9% 0

in which the great numerical disparity of the terms
visible in the dimensional form of the equations in
Table 2 is avoided which is one benefit from the
dimensionless form.

Appendix B

Computational costs of the GSEx-based sensi-
tivity analysis and the reference finite difference
procedure measured by the CPU times are influenced
by a very large number of the problem-dependent and
computer type-dependent (hardware and software)
variables, but a reasonable estimates can be made
if a number of simplifying assumptions are intro-
duced. The assumptions used here are:

1. there are N CA's, each having the same CPU
time cy for one solution.

2. complete solution of the system is itera-
tive; it requires p; iterations, and Nc; CPU
time in each iterat¥on.

3. repeated solution of the system for a small
perturbation of a design variable requires
P < Py iterations.

4, each CA is directly influenced by M
independent variables so that the total
number of independent variables is MN.

5. there are Z unknown variables Y in each CA.

6. each CA receives H input variables from the
remainder of the system.

7. partial sensitivity derivatives of a CA are
computed by finite differences, and each CA
solution repeated for a small perturbation
of input requires €y < ¢ of CPU time.

8. computation of residuals for a CA requires
¢4 CPU time.

9. solution of the GSE2 and GSEl with multiple

right hand sides takes c3 and cg CPU times,

respectively. These timés are eéxpected to

be relatively small, due to the use of the

parallel and vector processing technology.

Under this assumption, the cost of the finite
difference procedure is a sum of two terms: a
reference system analysis, and the system analysis
repeated for small perturbation of each of the in-
dependent variables. The two terms form, respec-
tively, the following expression:

Nc

0 1P1 *+ e

MN

(]
n

1P2

cp (N + (pz/pl)MNZ (81)

For the GSE2-based sensitivity analysis the cost is
a sum of the cost of one system analysis, the cost
of solution of each of the N CA's repeated for a
small perturbation of its (H + M) inputs to compute
the partial derivatives, and the cost of solving
the GSE2. These three cost contributions are re-
presented by the respective terms in the following
expression:

" = Neipy + N (H+ M)+ C3 (B2)

Finally, for the GSEl-based sensitivity analysis
the cost is a sum of the cost of one system anal-
ysis, the cost of computing the residuals of each
CA for small perturbations of each of: its unknown
Y variables, each of the coupling Y variables, and
each of the X variables influencing that CA. The
total cost includes also the cost of solving the
GSE1l. These three cost contributions are repre-
sented by the respective terms in the expression:

c' = Nypy + cu{Z + H + M)+ cg (B3)

The above equations reveal that the finite differ-
ence procedure cost may be tending toward over-
whelming values for large number of CA's because of
the presence of the N2 term in Eq. Bl. On the
other hand, the cost of the GSEx-based sensitivity
analysis does not depend on N° but is proportional
to H and the cost of solution of the GSEx. This



suggests that its cost advantage over the finite
difference procedure will increase with the size of
the system measured by N, provided that magnitude
of the coupling bandwidth H is judiciously kept
under control, and the full advantage is taken of
-the progress in computing technology to keep c3 and
Cg as low as possible. :

It is apparent from £q. B2 and B3 that the
GSE1 cost has a potential of being much smaller
than that of GSEZ2 because evaluation of the
residuals for a CA takes much less time than
computation of the partial derivatives of its
output with respect to its input. Therefore, one
may expect ¢, << c, - a reasonable estimate would
be a one, or two, orders of magnitude difference.
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TABLE 1. NEFINITION OF EXAMPLE 1

NOTATION AND DATA

e Notation: h - span

C - chord

51 =a-z; 52 2,-2
p = 51/52
S=RB.C
YG. = {L,C)a) X(l = {S,U,r,eo,c,s,‘y}
L= f,(v,6); o = fgll);
YB = {¢} XB = {il’izrk]_’kZ)
e Data: B = 100 c¢m, C = 10 cm, 21 = .2; 22 = .7;
ky = 4000 N/cm; kp = 2000 N/cm
3= .25; q = INJe’;
COUPLING COUPLING
DATA MNVING AERNDYNAMIC CA. DATA MNVING
DOWN up
L=q+5S-. L
c = ue+ r(l #
- cos((n/Z)(e/OO)))
L STRUCTURAL CA. ¢
Rl = L/(l + D)
Ry = Lp/(1 + p)
d = R/
d2 = Rz/kz
¢ = (dy - dy}/(C - (22
- 21))




TABLE 2. SENSITIVITY ANALYSIS OF EXAMPLE 1.

SYSTEM SOLUTION

L

= 502.3 N; ¢ = .0176 rd

DERIVATIVES WITH RESPECT TO ¥ BY FINITE

DIFFERENCES

[~
€
n

14925.16 M/rd

.0025

: -g% = 5221287 rd/rd

GSE2

Symbolically:

Numerically:

—

I -af,/o¢ | (3L/0¥ 6, /2
-afs/aL/ 1| {3¢/ay 0

1 -9805.105] fL/a¥ 9805.10
-.35107% 1| lag/av 0

:

DERIVATIVES WITH RESPECT TO ¥ FROM GSE2

%L = 14928.12 N/rd; g% = ,5224841 rd/rd

v -

*Numerical values of 3f /3¢ and 3f /oy are
equal because of relation marked # in Table 1

al(X,Yg,Yy ), Yq)=0

==
BUX,Yg7 Yy ). Y)=0

v((x,vp)&:/).\ Yy )=0

Fig. 1 Function vectors (a) forming a set of
coupled equations (b).

Fig. 2 Directed graph representation of the
system shown in Fiq. 1.
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Xy
a

[ attx.vg, Yy

). Yg)=0 |

[ Bz vy

D Yp)=o | Xy +AXy

[ v«x.vp:’v::). Yy)=0 |

]

'Ya-+AY¢‘YB'+AYB

Yy +AYy,

Fig. 3 Finite difference procedure involving the

system analysis.

i—

1 I acﬂi/av,ig jaYq/ax, | t 3ta
ax,

i I tavgrax, | _} ofp
- ) ex,
i
oo I 1aYy/ 9 X, | ’la«y(
. axk

—— 81y /8Yg,
Fig. 4 Anatomy of the GSE2.
1 8 Y 2 apyv

(:) ale (@) ale

8 . Ble|e
® ©v ] ® ©v .
3 afy 4 apy
(@) ale (@) ale .
Blele ‘ Ble|e
() Q) Y ole () Y ole

Fig. 5 System co

matrix.

uplings reflected in the GSE2

5 ap 6 B Y

o afee]e o ale|e]e

Ble]e / Bleloe|e

0/"0 Y ofe v oo

7 apy 8 apy

/}J&\ alefe|e "":!}l.a .

Bloje]|e Ble|e

QQ Y(e|eo]|e 0 o Y|e .

Fig. 6 More examples of system couplings and their

reflection in the GSE2 matrix.



Fig. 7 Example 1: a simple aerodynamic-
structures system
”‘(///~—-r
CL
u
1
o, ©

Fig. 8 Nonlinear relationship C_ vs. angle of
attack in Example 1.

— Loads L
—
~
aero L P
a
L
— Deform. ¢

Fig. 9 The system from Fig. 7 abstracted as a
"hlack hox" with a directed graph showing
internal counling.

Wing system=aerodynamics + structures + active controls

esse0ee0D I

sizing

ok

77— Partial sensitivity of
control surface

deflections to control
law parameters.

Total sensitivity of
deformation to

struct. sizing. Partial sensitivity of

deformation to struct. sizing
eLift L=j_ loads dS:dL/d(str. siz.}=[ dlloads)/d(str. siz.)dS:

Fig. 10 Example of a flexible wing: a system
comprising aerodynamics, structures, and
active control.
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e
Q

H
Solve the system

Compute the partials locally
o[8[V [

GSE2 —total derivatives

Use the total derivatives to
redesign toward improvement

Repeat

concurrent

R

Fig. 11 Sensitivity procedure in design process.
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s W
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Figure 12.- Constrained minimum defined by
intersection (a) and tangency (b).
Y2

Figure 13.- I11-defined constrained minimum.
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